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Abstract. We present “Verified JavaBIP”, a tool set for the verification
of JavaBIP models. A JavaBIP model is a Java program where classes
are considered as components, their behaviour described by finite state
machine and synchronization annotations. While JavaBIP guarantees ex-
ecution progresses according to the indicated state machines, it does not
guarantee properties of the data exchanged between components. It also
does not provide verification support to check whether the behaviour of
the resulting concurrent program is as (safe as) expected. This paper
addresses this by extending the JavaBIP engine with run-time verifi-
cation support, and by extending the program verifier VerCors to ver-
ify JavaBIP models deductively. These two techniques complement each
other: feedback from run-time verification allows quicker prototyping of
contracts, and deductive verification can reduce the overhead of run-time
verification. We demonstrate our approach on the “Solidity Casino” case
study, known from the VerifyThis Collaborative Long Term Challenge.

1 Introduction
Modern software systems are inherently concurrent: they consist of multiple
components that run simultaneously and share access to resources. Component
interaction leads to resource contention, and if not coordinated properly, can
compromise safety-critical operations. The concurrent nature of such interactions
is the root cause of the sheer complexity of the resulting software [9]. Model-
based coordination frameworks such as Reo [5] and BIP [6] address this issue by
providing models with a formally defined behaviour and verification tools.

JavaBIP [10] is an open-source Java implementation of the BIP coordina-
tion mechanism. It separates the application model into component behaviour,
modelled as Finite State Machines (FSMs), and glue, which defines the possi-
ble stateless interactions among components in terms of synchronisation con-
straints. The overall behaviour of an application is to be enforced at run time
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by the framework’s engine. Unlike BIP, JavaBIP does not provide automatic
code generation from the provided model; instead it realises the coordination
of existing software components in an exogenous manner, relying on component
annotations that provide an abstract view of the software under development.

To model component behaviour, methods of a JavaBIP program are anno-
tated with FSM transitions. These annotated methods model the actions of the
program components. Computations are assumed to be terminating and non-
blocking. Furthermore, side-effects are assumed to be either represented by the
change of the FSM state, or to be irrelevant for the system behaviour. Any
correctness argument for the system depends on these assumptions. A limita-
tion of JavaBIP is that it does not guarantee that these assumptions hold. This
paper proposes a joint extension of JavaBIP and VerCors [11] providing such
guarantees about the implementation statically and at run time.

VerCors [11] is a state-of-the-art deductive verification tool for concurrent
programs that uses permission-based separation logic [3]. This logic is an exten-
sion of Hoare logic that allows specifying properties using contract annotations.
These contract annotations include permissions, pre- and postconditions and
loop invariants. VerCors automatically verifies programs with contract annota-
tions. To verify JavaBIP models, we (i) extend JavaBIP annotations with ver-
ification annotations, and (ii) adapt VerCors to support JavaBIP annotations.
VerCors was chosen for integration with JavaBIP because it supports multi-
threaded Java, which makes it straightforward to express JavaBIP concepts in
its internal representation. To analyze JavaBIP models, VerCors transforms the
model with verification annotations into contract annotations, leveraging their
structure as specified by the FSM annotations and the glue.

For some programs VerCors requires extra contract annotations. This is gen-
erally the case with while statements and when recursive methods are used. To
enable properties to be analysed when not all necessary annotations are added
yet, we extend the JavaBIP engine with support for run-time verification. During
a run of the program, the verification annotations are checked for that specific
program execution at particular points of interest, such as when a JavaBIP com-
ponent executes a transition. The run-time verification support is set up in such
a way that it ignores any verification annotations that were already statically
verified, reducing the overhead of run-time verification.

This paper presents the use of deductive and run-time verification to prove
assumptions of JavaBIP models. We make the following contributions:
– We extend regular JavaBIP annotations with pre- and postconditions for

transitions and invariants for components and states. This allows checking
design assumptions, which are otherwise left implicit and unchecked.

– We extend VerCors to deductively verify a JavaBIP model, taking into ac-
count its FSM and glue structure.

– We add support for run-time verification to the JavaBIP engine.
– We link VerCors and the JavaBIP engine such that deductively proven an-

notations need not be monitored at run-time.
– Finally, we demonstrate our approach on a variant of the Casino case study

from the VerifyThis Collaborative Long Term Challenge.
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Tool binaries and case study sources are available through the artefact [7].

2 Related Work
There are several approaches to analyse behaviours of abstract models in the lit-
erature. Bliudze et al. propose an approach allowing verification of infinite state
BIP models in the presence of data transfer between components [8]. Abdellatif
et al. used the BIP framework to verify Ethereum smart contracts written in
Solidity [1]. Mavridou et al. introduce the VeriSolid framework, which generates
Solidity code from verified models [13]. André et al. describe a workflow to anal-
yse Kmelia models [4]. They also describe the COSTOTest tool, which runs tests
that interact with the model. Thus, these approaches do not consider verifica-
tion of model implementation, which is what we do with Verified JavaBIP. Only
COSTOTest establishes a connection between the model and implementation,
but it does not guarantee memory safety or correctness.

There is also previous work on combining deductive and runtime verification.
The following discussion is not exhaustive. Generally, these works do not support
concurrent Java and JavaBIP. Nimmer et al. infer invariants with Daikon and
check them with ESC/Java [14]. However, they do not check against an abstract
model, and the results are not used to optimize execution. Bodden et al. and
Stulova et al. optimize run-time checks using static analysis [12,16]. However,
Stulova et al. do not support state machines, and Bodden et al. do not support
data in state machines. The STARVOORS tool by Ahrendt et al. is comparable
to Verified JavaBIP [2]. Some minor differences include the type of state machine
used, and how Hoare triples are expressed. The major difference is that it is not
trivial to support concurrency in STARVOORS. VerCors and Verified JavaBIP
use separation logic, which makes concurrency support straightforward.

3 JavaBIP and Verification Annotations
JavaBIP annotations capture the FSM specification and describe the behaviour
of a component. They are attached to classes, methods or method parameters,
and were first introduced by Bliudze et al [10]. Listing 1 shows an example of
JavaBIP annotations. @ComponentType indicates a class is a JavaBIP component
and specifies its initial state. In the example this is the WAITING state. @Port
declares a transition label. Method annotations include @Transition, @Guard
and @Data. @Transition consists of a port name, start and end states, and
optionally a guard. The example transition goes from WAITING to PINGED when
the PING port is triggered. The transition has no guard so it may always be taken.
@Guard declares a method which indicates if a transition is enabled. @Data either
declares a getter method as outgoing data, or a method parameter as incoming
data. Note that the example does not specify when ports are activated. This is
specified separately from the JavaBIP component as glue [10].

We added component invariants and state predicates to Verified JavaBIP as
class annotations. @Invariant(expr) indicates expr must hold after each com-
ponent state change. @StatePredicate(state, expr) indicates exprmust hold
in state state. Pre- and postconditions were also added to the @Transition an-
notation. They have to hold before and after execution of the transition. @Pure
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1 @Port(name = PING , type = PortType.enforceable)
2 @ComponentType(initial = WAITING , name = ECHO_SPEC)
3 public class Echo {
4 @Transition(name = PING , source = WAITING , target = PINGED)
5 public void ping() { System.out.println(this + ": pong");}}

Listing 1. Example of a minimal pinging component in JavaBIP

VerCors Result? Report

JavaBIP 
Engine

Success  

Violation  

Pass  

Fail  

(optional)

JavaBIP 
Model

Fig. 1. Verified JavaBIP architecture. Ellipse boxes represent analysis or execution.

indicates that a method is side-effect-free, and is used with @Guard and @Data.
Annotation arguments should follow the grammar of Java expressions. We do
not support lambda expressions, method references, switch expressions, new,
instanceOf, and wildcard arguments. In addition, as VerCors does not yet sup-
port Java features such as generics and inheritance, models that use these cannot
be verified. These limitations might be lifted in the future.

4 Architecture of Verified JavaBIP
The architecture of Verified JavaBIP is shown in Figure 1. The user starts with a
JavaBIP model, optionally with verification annotations. The user then has two
choices: verify the model with VerCors, or execute it with the JavaBIP Engine.

We extended VerCors to transform the JavaBIP model into the VerCors in-
ternal representation, Common Object Language (COL). An example of this
transformation is given in Listing 2. If verification succeeds, the JavaBIP model
is memory safe, has no data races, and the components respect the properties
specified in the verification annotations. In this case, no extra run-time veri-
fication is needed. If verification fails, there are either memory safety issues,
components violate properties, or the prover timed out. In the first case, the
user needs to change the program or annotations and retry verification with
VerCors. This is necessary because memory safety properties cannot be checked
with the JavaBIP engine, and therefore safe execution of the JavaBIP model is
not guaranteed. In the second and third case, VerCors produces a verification
report with the verification result for each property.

We extended the JavaBIP engine with run-time verification support. If a
verification report is included with the JavaBIP model, the JavaBIP engine uses
it to only verify at run-time the verification annotations that were not verified
deductively. If no verification report is included, the JavaBIP engine verifies all
verification annotations at run time.
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1 @Transition(name=PING ,source=PING ,target=PING ,guard=HAS_PING)
2 public void ping() { pingsLeft --; }

1 requires PING_state_predicate () && hasPing ();
2 ensures PING_state_predicate ();
3 public void ping() { pingsLeft --; }

Listing 2. Top: example of a transition in JavaBIP. Bottom: internal representation
of ping after encoding JavaBIP semantics.

5 Implementation of Verified JavaBIP
This section briefly discusses relevant implementation details for Verified JavaBIP.

Run-time verification in the JavaBIP engine is performed by checking compo-
nent properties after component construction, and before and after transitions.
For example, before the JavaBIP engine executes a transition, it checks the
component invariant, the state invariant, and the precondition of the transi-
tion. When a property is violated, either execution is terminated or a warning is
printed, depending on how the user configured the JavaBIP engine. We expect
runtime verification performance to scale linearly, as properties can be checked
individually. We have not measured the impact of the use of reflection in the
JavaBIP engine.

For deductive verification the JavaBIP semantics is encoded into COL. We
describe this with an example. The top part of Listing 2 shows the ping method,
where @Transition indicates a transition from PING to PING. The guard indi-
cates that the transition is allowed if there is a ping. HAS_PING refers to a method
annotated with @Guard(name=HAS_PING), which returns pingsLeft >= 1.

The bottom part of Listing 2 shows the COL representation of the ping
method after encoding the JavaBIP semantics. Line 1 states the precondition,
line 2 the postcondition. PING_state_predicate() refers to the PING state pred-
icate, which constrains the values of the class fields. By default it is just true.
Since the predicate is both a pre- and a postcondition, it is assumed at the start
of the method, and needs to hold at the end of the method. hasPing() is the
method with the @Guard annotation for the HAS_PING label. The method is called
directly in the COL representation. We have implemented such a transformation
of JavaBIP to COL for each JavaBIP construct.

To prove memory safety, we extended VerCors to generate permissions. This
ensures verification in accordance with the Java memory model. Currently, each
component owns the data of all its fields. This works for JavaBIP models that
do not share data between components. For other models, a different approach
might be necessary, e.g. VerCors taking into account permissions annotations
provided by the user. For more info about permissions, we refer the reader to [3].

Finally, scalability of deductive verification of JavaBIP models could be a
point of future work, as the number of proof obligations scales quadratically in
the number of candidate transitions of a synchronization.
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6 VerifyThis Casino and Verified JavaBIP
We illustrate Verified JavaBIP with the Casino case study adapted from [17]. We
discuss the case study and its verification. The case study sources and Verified
JavaBIP sources and binaries are included in the artefact [7].

The model uses three component types: player, operator, and casino. The
model supports multiple players and casinos, but each casino has only one op-
erator. Players bet on the result of a coin flip. The casino pays out twice for
a correct guess, and keeps the money otherwise. The casino contains the pot
balance and money reserved for the current bet. The operator can add to or
withdraw money from the casino pot based on a local copy of the casino pot.

We have added several invariants to this model. The purse of every player, the
casino pot, its operator copy, the wallet of the operator, and the placed bet must
all be non-negative, as the model does not support debts. If no bet is placed, it
must be zero. These properties are defined as @Invariant or @StatePredicate
annotations on the components in the model (see ??).

One problem with the model is that the player can win more than the casino
pot contains, because there are no restrictions on how much the player can bet.
The problem is detected by both deductive and run-time verification. VerCors
cannot prove that the casino pot is non-negative, which is part of the casino
invariant, after the PLAYER_WIN transition. The JavaBIP engine detects it, but
is not guaranteed to because the model has some non-determinism. For example,
if no player ever wins the problem is not detected by run-time verification.

There are several solutions. First, the user can choose to always enable run-
time verification, such that the execution is always safe. This might be accept-
able depending on the performance penalty of run-time verification. Second,
guards can be added to restrict model behaviour. For example, PLACE_BET could
require bet <= pot. However, in general, adding guards might introduce dead-
locks. Third, a solution is to refactor the model to avoid the problem. For exam-
ple, the casino could limit how much the player can bet. This introduces no extra
run-time checks, however, in general the behaviour of the model will change.

7 Conclusions and Future Work
We presented Verified JavaBIP, a tool set for verifying the assumptions of JavaBIP
models and their implementations. The tool set extends the original JavaBIP an-
notations for verification of functional properties. Verified JavaBIP supports de-
ductive verification using VerCors, and run-time verification using the JavaBIP
engine. Only properties that could not be verified deductively are checked at
runtime. In the demonstration we automatically detect a problem on the Casino
case study using Verified JavaBIP.

There are several directions for future work. First, support for checking mem-
ory safety could be extended by supporting data sharing between components.
Second, we want to investigate run-time verification of memory safety. Third,
more experimental evaluation can be done on the capabilities and performance of
Verified JavaBIP. Fourth and finally, we want to investigate run-time verification
of safety properties of the JavaBIP model beyond invariants.
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